method$48424$ - перевод на греческий
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

method$48424$ - перевод на греческий

Schrodinger method; Schroedinger method; Schrodinger's method; Schroedinger's method; Schrödinger's method

method      
n. μέθοδος, μεθοδικότητα
income account         
TIME WHEN FINANCIAL TRANSACTIONS ARE REPORTED
Cash basis accounting; Accounting methods; Cash-basis verses accrual-basis accounting; Income account; Cash-basis versus accrual-basis accounting; Income Account; Cash Method v. Accrual Method; Comparison of the Cash Method and Accrual Method of accounting; Comparison of cash method and accrual method of accounting; Comparison of Cash Method and Accrual Method of accounting; Accrual method; Accrual method of accounting; Comparison of cash and accrual methods of accounting; Accounting method
εισοδηματικός λογαριασμός
coffer dam         
  • Olmsted Lock and Dam]]
  • Inside of a cofferdam on a vessel
  • lock]]s at the Montgomery Point Lock and Dam
TEMPORARY CONSTRUCTION PREVENTING WATER PASSAGE
Coffer dam; Coffer-dam; Coffer dam method; Cofferdams
φρεάτιο

Определение

class method
<programming> A kind of method, available in some object-oriented programming languages, that operates on the class as a whole, as opposed to an object method that operates on an object that is an instance of the class. A typical example of a class method would be one that keeps a count of the number of objects of that class that have been created. (2000-03-22)

Википедия

Schrödinger method

In combinatorial mathematics and probability theory, the Schrödinger method, named after the Austrian physicist Erwin Schrödinger, is used to solve some problems of distribution and occupancy.

Suppose

X 1 , , X n {\displaystyle X_{1},\dots ,X_{n}\,}

are independent random variables that are uniformly distributed on the interval [0, 1]. Let

X ( 1 ) , , X ( n ) {\displaystyle X_{(1)},\dots ,X_{(n)}\,}

be the corresponding order statistics, i.e., the result of sorting these n random variables into increasing order. We seek the probability of some event A defined in terms of these order statistics. For example, we might seek the probability that in a certain seven-day period there were at most two days in on which only one phone call was received, given that the number of phone calls during that time was 20. This assumes uniform distribution of arrival times.

The Schrödinger method begins by assigning a Poisson distribution with expected value λt to the number of observations in the interval [0, t], the number of observations in non-overlapping subintervals being independent (see Poisson process). The number N of observations is Poisson-distributed with expected value λ. Then we rely on the fact that the conditional probability

P ( A N = n ) {\displaystyle P(A\mid N=n)\,}

does not depend on λ (in the language of statisticians, N is a sufficient statistic for this parametrized family of probability distributions for the order statistics). We proceed as follows:

P λ ( A ) = n = 0 P ( A N = n ) P ( N = n ) = n = 0 P ( A N = n ) λ n e λ n ! , {\displaystyle P_{\lambda }(A)=\sum _{n=0}^{\infty }P(A\mid N=n)P(N=n)=\sum _{n=0}^{\infty }P(A\mid N=n){\lambda ^{n}e^{-\lambda } \over n!},}

so that

e λ P λ ( A ) = n = 0 P ( A N = n ) λ n n ! . {\displaystyle e^{\lambda }\,P_{\lambda }(A)=\sum _{n=0}^{\infty }P(A\mid N=n){\lambda ^{n} \over n!}.}

Now the lack of dependence of P(A | N = n) upon λ entails that the last sum displayed above is a power series in λ and P(A | N = n) is the value of its nth derivative at λ = 0, i.e.,

P ( A N = n ) = [ d n d λ n ( e λ P λ ( A ) ) ] λ = 0 . {\displaystyle P(A\mid N=n)=\left[{d^{n} \over d\lambda ^{n}}\left(e^{\lambda }\,P_{\lambda }(A)\right)\right]_{\lambda =0}.}

For this method to be of any use in finding P(A | N =n), must be possible to find Pλ(A) more directly than P(A | N = n). What makes that possible is the independence of the numbers of arrivals in non-overlapping subintervals.